Tangential Boundary Stabilization of Navier-Stokes Equations
Author | : Viorel Barbu |
Publisher | : American Mathematical Soc. |
Total Pages | : 146 |
Release | : 2006 |
ISBN-10 | : 9780821838747 |
ISBN-13 | : 0821838741 |
Rating | : 4/5 (47 Downloads) |
Download or read book Tangential Boundary Stabilization of Navier-Stokes Equations written by Viorel Barbu and published by American Mathematical Soc.. This book was released on 2006 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of the penalization or observation operator--is strictly larger than $\tfrac{3}{2}$, as expressed in terms of fractional powers of the free-dynamics operator. In contrast, established (and rich) optimal control theory [L-T.2] of boundary control parabolic problems and corresponding algebraic Riccati theory requires a combined index of unboundedness strictly less than 1. An additional preliminary serious difficulty to overcome lies at the outset of the program, in establishing that the present highly non-standard OCP--with the aforementioned high level of unboundedness in control and observation operators and subject, moreover, to the additional constraint that the controllers be pointwise tangential--be non-empty; that is, it satisfies the so-called Finite Cost Condition [L-T.2].