Recurrent Neural Networks with Python Quick Start Guide

Recurrent Neural Networks with Python Quick Start Guide
Author :
Publisher : Packt Publishing Ltd
Total Pages : 115
Release :
ISBN-10 : 9781789133660
ISBN-13 : 1789133661
Rating : 4/5 (60 Downloads)

Book Synopsis Recurrent Neural Networks with Python Quick Start Guide by : Simeon Kostadinov

Download or read book Recurrent Neural Networks with Python Quick Start Guide written by Simeon Kostadinov and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.


Recurrent Neural Networks with Python Quick Start Guide Related Books

Recurrent Neural Networks with Python Quick Start Guide
Language: en
Pages: 115
Authors: Simeon Kostadinov
Categories: Computers
Type: BOOK - Published: 2018-11-30 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep
Deep Learning with PyTorch Quick Start Guide
Language: en
Pages: 150
Authors: David Julian
Categories: Computers
Type: BOOK - Published: 2018-12-24 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classif
Deep Learning with Python
Language: en
Pages: 597
Authors: Francois Chollet
Categories: Computers
Type: BOOK - Published: 2017-11-30 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and G
Deep Learning Quick Reference
Language: en
Pages: 261
Authors: Michael Bernico
Categories: Computers
Type: BOOK - Published: 2018-03-09 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep lea
Grokking Deep Reinforcement Learning
Language: en
Pages: 470
Authors: Miguel Morales
Categories: Computers
Type: BOOK - Published: 2020-11-10 - Publisher: Manning Publications

DOWNLOAD EBOOK

Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intu