$h$-Principles and Flexibility in Geometry
Author | : Hansjörg Geiges |
Publisher | : American Mathematical Soc. |
Total Pages | : 74 |
Release | : 2003 |
ISBN-10 | : 9780821833155 |
ISBN-13 | : 0821833154 |
Rating | : 4/5 (55 Downloads) |
Download or read book $h$-Principles and Flexibility in Geometry written by Hansjörg Geiges and published by American Mathematical Soc.. This book was released on 2003 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of homotopy principle or $h$-principle is one of the key concepts in an elegant language developed by Gromov to deal with a host of questions in geometry and topology. Roughly speaking, for a certain differential geometric problem to satisfy the $h$-principle is equivalent to saying that a solution to the problem exists whenever certain obvious topological obstructions vanish. The foundational examples for applications of Gromov's ideas include (i) Hirsch-Smale immersion theory, (ii) Nash-Kuiper $C^1$-isometric immersion theory, (iii) existence of symplectic and contact structures on open manifolds. Gromov has developed several powerful methods that allow one to prove $h$-principles. These notes, based on lectures given in the Graduiertenkolleg of Leipzig University, present two such methods which are strong enough to deal with applications (i) and (iii).