Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation

Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation
Author :
Publisher :
Total Pages : 230
Release :
ISBN-10 : OCLC:986241935
ISBN-13 :
Rating : 4/5 (35 Downloads)

Book Synopsis Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation by : Michael S. H. Boutilier

Download or read book Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation written by Michael S. H. Boutilier and published by . This book was released on 2017 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separating components of a gas from a mixture is a critical step in several important industrial processes including natural gas purification, hydrogen production, carbon dioxide sequestration, and oxy-combustion. For such applications, gas separation membranes are attractive because they offer relatively low energy costs but can be limited by low flow rates and low selectivities. Nanoporous graphene membranes have the potential to exceed the permeance and selectivity limits of existing gas separation membranes. This is made possible by the atomic thickness of the material, which can support sub-nanometer pores that enable molecular sieving while presenting low resistance to permeate flow. The feasibility of gas separation by graphene nanopores has been demonstrated experimentally on micron-scale areas of graphene. However, scaling up to macroscopic sizes presents significant challenges, including graphene imperfections and control of the selective nanopore size distribution across large areas. The overall objective of this thesis research is to develop macroscopic graphene membranes for gas separation. Investigation reveals that the inherent permeance of large areas of graphene results from the presence of micron-scale tears and nanometer-scale intrinsic defects. Stacking multiple graphene layers is shown to reduce leakage exponentially. A model is developed for the inherent permeance of multi-layer graphene and shown to accurately explain measured flow rates. Applying this model to membranes with created selective pores, it is predicted that by proper choice of the support membrane beneath graphene or adequate leakage sealing, it should be possible to construct a selectively permeable graphene membrane despite the presence of defects. Interfacial polymerization and atomic layer deposition steps during membrane fabrication are shown to effectively seal micron-scale tears and nanometer-scale defects in graphene. The support membrane is designed to isolate intrinsic defects and reduce leakage through tears. Methods of creating a high density of selectively permeable nanopores are explored. Knudsen selectivity is achieved using macroscopic three-layer graphene membranes on polymer supports by high density ion bombardment. Separation ratios exceeding the Knudsen effusion limit are achieved with single-layer graphene on optimized supports by low density ion bombardment followed by oxygen plasma etching, providing evidence of molecular sieving based gas separation through centimeter-scale graphene membranes.


Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation Related Books

Development of Macroscopic Nanoporous Graphene Membranes for Gas Separation
Language: en
Pages: 230
Authors: Michael S. H. Boutilier
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

Separating components of a gas from a mixture is a critical step in several important industrial processes including natural gas purification, hydrogen producti
Macroscopic Graphene Membranes with Tunable Nanopores for Highly Selective Mass Separation
Language: en
Pages: 139
Authors: Doojoon Jang
Categories:
Type: BOOK - Published: 2018 - Publisher:

DOWNLOAD EBOOK

Membrane-based filtration enables energy-efficient separations of solutes, solvents, or gases, benefiting a wide range of applications including water desalinat
Molecular Simulation Study of Transport and Separation of Gas Through Nanoporous Graphene Membranes
Language: en
Pages: 0
Authors: Juncheng Guo
Categories:
Type: BOOK - Published: 2020 - Publisher:

DOWNLOAD EBOOK

Nanoporous graphene membranes are gaining attention in the field of separation processes. Regarding gas separation, perm-selective membranes technology consumes
Gas Separation Using Nanoporous Single-layer Graphene Membranes
Language: en
Pages: 0
Authors: Zhe Yuan (Chemical engineer)
Categories:
Type: BOOK - Published: 2021 - Publisher:

DOWNLOAD EBOOK

Nanoporous single-layer graphene is regarded as a highly promising membrane material for gas separation due to its atomic thickness. When single-layer graphene
Graphene-based Membranes for Mass Transport Applications
Language: en
Pages: 242
Authors: Hongwei Zhu
Categories: Technology & Engineering
Type: BOOK - Published: 2018-09-21 - Publisher: Royal Society of Chemistry

DOWNLOAD EBOOK

There is great interest in the novel mass-transport properties of graphene-based membrane materials, especially for environmental applications such as wastewate