Wave Packet Analysis of Feynman Path Integrals
Author | : Fabio Nicola |
Publisher | : Springer Nature |
Total Pages | : 220 |
Release | : 2022-07-28 |
ISBN-10 | : 9783031061868 |
ISBN-13 | : 3031061861 |
Rating | : 4/5 (68 Downloads) |
Download or read book Wave Packet Analysis of Feynman Path Integrals written by Fabio Nicola and published by Springer Nature. This book was released on 2022-07-28 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this monograph is to offer an accessible and essentially self-contained presentation of some mathematical aspects of the Feynman path integral in non-relativistic quantum mechanics. In spite of the primary role in the advancement of modern theoretical physics and the wide range of applications, path integrals are still a source of challenging problem for mathematicians. From this viewpoint, path integrals can be roughly described in terms of approximation formulas for an operator (usually the propagator of a Schrödinger-type evolution equation) involving a suitably designed sequence of operators. In keeping with the spirit of harmonic analysis, the guiding theme of the book is to illustrate how the powerful techniques of time-frequency analysis - based on the decomposition of functions and operators in terms of the so-called Gabor wave packets – can be successfully applied to mathematical path integrals, leading to remarkable results and paving the way to a fruitful interaction. This monograph intends to build a bridge between the communities of people working in time-frequency analysis and mathematical/theoretical physics, and to provide an exposition of the present novel approach along with its basic toolkit. Having in mind a researcher or a Ph.D. student as reader, we collected in Part I the necessary background, in the most suitable form for our purposes, following a smooth pedagogical pattern. Then Part II covers the analysis of path integrals, reflecting the topics addressed in the research activity of the authors in the last years.