Hierarchical Bayesian Optimization Algorithm

Hierarchical Bayesian Optimization Algorithm
Author :
Publisher : Springer Science & Business Media
Total Pages : 194
Release :
ISBN-10 : 3540237747
ISBN-13 : 9783540237747
Rating : 4/5 (47 Downloads)

Book Synopsis Hierarchical Bayesian Optimization Algorithm by : Martin Pelikan

Download or read book Hierarchical Bayesian Optimization Algorithm written by Martin Pelikan and published by Springer Science & Business Media. This book was released on 2005-02 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine learning techniques. The book focuses on two algorithms that replace traditional variation operators of evolutionary algorithms by learning and sampling Bayesian networks: the Bayesian optimization algorithm (BOA) and the hierarchical BOA (hBOA). BOA and hBOA are theoretically and empirically shown to provide robust and scalable solution for broad classes of nearly decomposable and hierarchical problems. A theoretical model is developed that estimates the scalability and adequate parameter settings for BOA and hBOA. The performance of BOA and hBOA is analyzed on a number of artificial problems of bounded difficulty designed to test BOA and hBOA on the boundary of their design envelope. The algorithms are also extensively tested on two interesting classes of real-world problems: MAXSAT and Ising spin glasses with periodic boundary conditions in two and three dimensions. Experimental results validate the theoretical model and confirm that BOA and hBOA provide robust and scalable solution for nearly decomposable and hierarchical problems with only little problem-specific information.


Hierarchical Bayesian Optimization Algorithm Related Books

Hierarchical Bayesian Optimization Algorithm
Language: en
Pages: 194
Authors: Martin Pelikan
Categories: Computers
Type: BOOK - Published: 2005-02 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine l
Scalable Optimization via Probabilistic Modeling
Language: en
Pages: 363
Authors: Martin Pelikan
Categories: Mathematics
Type: BOOK - Published: 2006-09-25 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading p
Advances in Soft Computing
Language: en
Pages: 627
Authors: Rajkumar Roy
Categories: Technology & Engineering
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a sele
Genetic and Evolutionary Computation--GECCO 2003
Language: en
Pages: 1294
Authors: Erick Cantú-Paz
Categories: Computers
Type: BOOK - Published: 2003-07-08 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionaty Computation Conference, GECCO 2003, held in Chicago, IL, US
Genetic and Evolutionary Computation — GECCO 2004
Language: en
Pages: 1448
Authors: Kalyanmoy Deb
Categories: Computers
Type: BOOK - Published: 2004-10-12 - Publisher: Springer

DOWNLOAD EBOOK

The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA,